Mapping and Application of Enhancer-trap Flippase Expression in Larval and Adult Drosophila CNS
نویسندگان
چکیده
The Gal4/ UAS binary method is powerful for gene and neural circuitry manipulation in Drosophila. For most neurobiological studies, however, Gal4 expression is rarely tissue-specific enough to allow for precise correlation of the circuit with behavioral readouts. To overcome this major hurdle, we recently developed the FINGR method to achieve a more restrictive Gal4 expression in the tissue of interest. The FINGR method has three components: 1) the traditional Gal4/UAS system; 2) a set of FLP/FRT-mediated Gal80 converting tools; and 3) enhancer-trap FLP (ET-FLP). Gal4 is used to define the primary neural circuitry of interest. Paring the Gal4 with a UAS-effector, such as UAS-MJD78Q or UAS-Shi(ts), regulates the neuronal activity, which is in turn manifested by alterations in the fly behavior. With an additional UAS-reporter such as UAS-GFP, the neural circuit involved in the specific behavior can be simultaneously mapped for morphological analysis. For Gal4 lines with broad expression, Gal4 expression can be restricted by using two complementary Gal80-converting tools: tub(P)>Gal80> ('flip out') and tub(P)>stop>Gal80 ('flip in'). Finally, investigators can turn Gal80 on or off, respectively, with the help of tissue-specific ET-FLP. In the flip-in mode, Gal80 will repress Gal4 expression wherever Gal4 and ET-FLP intersect. In the flip-out mode, Gal80 will relieve Gal4 repression in cells in which Gal4 and FLP overlap. Both approaches enable the restriction of the number of cells in the Gal4-defined circuitry, but in an inverse pattern. The FINGR method is compatible with the vast collection of Gal4 lines in the fly community and highly versatile for traditional clonal analysis and for neural circuit mapping. In this protocol, we demonstrate the mapping of FLP expression patterns in select ET-FLPx2 lines and the effectiveness of the FINGR method in photoreceptor cells. The principle of the FINGR method should also be applicable to other genetic model organisms in which Gal4/UAS, Gal80, and FLP/FRT are used.
منابع مشابه
A Flippase-Mediated GAL80/GAL4 Intersectional Resource for Dissecting Appendage Development in Drosophila
Drosophila imaginal discs provide an ideal model to study processes important for cell signaling and cell specification, tissue differentiation, and cell competition during development. One challenge to understanding genetic control of cellular processes and cell interactions is the difficulty in effectively targeting a defined subset of cells in developing tissues in gene manipulation experime...
متن کاملEnhancer-Trap Flippase Lines for Clonal Analysis in the Drosophila Ovary
The Drosophila melanogaster genetic tool box includes many stocks for generating genetically mosaic tissue in which a clone of cells, related by lineage, contain a common genetic alteration. These tools have made it possible to study the postembryonic function of essential genes and to better understand how individual cells interact within intact tissues. We have screened through 201 enhancer-t...
متن کاملCentral projections of persistent larval sensory neurons prefigure adult sensory pathways in the CNS of Drosophila.
We have used a GAL4 enhancer-trap line driving the expression of a lacZ construct to examine the reorganisation of an identified group of proprioceptive sensory neurons during metamorphosis in Drosophila. The results show that whilst most larval sensory neurons degenerate during the first 24 hours of metamorphosis a segmentally repeated array of 6 neurons per segment persists into the adult sta...
متن کاملThe genetic variant Voila causes gustatory defects during Drosophila development.
Voila(1), an enhancer-trap strain in Drosophila melanogaster, expresses GAL4 in most gustatory neurons, both before and after metamorphosis. Voila(1) expression starts at embryonic stage 10. In the periphery, it labels larval gustatory sensilla in the antennomaxillary complex as well as in the pharynx. GAL4 is also expressed in the CNS in a manner that prefigures expression in adult flies. Most...
متن کاملA Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research
Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 107 شماره
صفحات -
تاریخ انتشار 2011